Fundamentals_Engineering FE Environmental

		FE En	viror	nmen	ıtal		
DAY	Topic/ Number of Questions	Knowledge Area	٧	DAY	Topic/ Number of Questions	Knowledge Area	٧
	•	A.Analytic geometry and trigonometry		1	10. Surface Water Resources and Hydrology	B. Water storage sizing (e.g., reservoir, detention	
2		B.Algebraic equations and roots		47 48	9–14 Rest	and retention basins) Rest	
3	1.Mathematics5-8	C.Calculus (e.g., differential, integral,		49		C. Routing (e.g., channel, reservoir)	
3		differential equations) D.Numerical methods (e.g., numerical		49		D. Water quality and modeling (e.g., erosion, channel	
4		integration, approximations, precisionlimits, error propagation)		50	10. Surface Water Resources and Hydrology 9–14	stability, stormwater quality management, wetlands, Streeter-Phelps, eutrophication)	
5	2.Probability and Statistics4–6	A.Measures of central tendencies and dispersions (e.g., mean, mode,standard deviation)		51		E. Water budget (e.g., evapotranspiration, precipitation, infiltration, soil moisture, storage)	
6	Rest	Rest		52		A. Basic hydrogeology (e.g., aquifer properties, soil characteristics, subsurface)	
7		B.Probability distributions (e.g., discrete, continuous, normal, binomial)		53	11. Groundwater, Soils, and Sediments 8–12	B. Groundwater flow (e.g., Darcy's law, specific capacity, velocity, gradient, transport mechanisms)	
8		C.Estimation for a single mean (e.g., point, confidence intervals)		54	Rest	Rest	
	2.Probability and Statistics4–6	D.Regression (linear, multiple), curve fitting, and goodness of fit (e.g.,correlation coefficient,			11. Groundwater, Soils, and Sediments 8–12	C. Drawdown (e.g., Dupuit, Jacob, Theis, Thiem)	
9		least squares) E.Hypothesis testing (e.g., t-test, outlier testing,		55		D. Remediation of soil, sediment, and/or groundwater	
10	2 Ethics and Professional Practices 9	analysis of the variance) A.Codes of ethics (e.g., professional and		56	11. Groundwater, Soils, and Sediments 8–12	(e.g., recovery, ex-situ/in-situ treatment) A. Water and wastewater characteristics (e.g.,	
11	3.Ethics and Professional Practice5–8	technical societies, ethical andlegal considerations)		57		physical, chemical, biological, nutrients) B. Mass balance and loading rates (e.g., removal	
12	Rest	Rest		58	12. Water and Wastewater 12–18	efficiencies) C. Physical processes (e.g.,	
13	O Ethio and Burfacional Books 5	B.Public health, safety, and welfare (e.g., public protection issues, licensingboards, professional liability)		59		sedimentation/clarification, filtration, adsorption, membrane, flocculation, headworks, flow equalization, air stripping, activated carbon)	
14		C.Compliance with codes, standards, and regulations (e.g., CWA, CAA, RCRA,CERCLA, SDWA, NEPA, OSHA)		60	Rest	Rest	
15		D.Engineer's role in society (e.g., sustainability, resiliency, long-term viability)		61		D. Chemical processes (e.g., disinfection, ion exchange, softening, coagulation, precipitation)	
16	4.Engineering Economics5–8	A.Time value of money (e.g., equivalence, present worth, equivalent annualworth, future worth, rate of return, annuities) B.Cost types and breakdowns (e.g., fixed,		62	12. Water and Wastewater 12–18	E. Biological processes (e.g., activated sludge, fixed film, lagoons, phytoremediation, aerobic, anaerobic, anoxic) F. Sludge treatment and handling (e.g., land	
17		variable, direct and indirect labor,incremental, average, sunk, O&M)		63		application, digestion, sludge dewatering, composting)	
18	Rest	Rest		64		G. Water conservation and reuse	
19	4.Engineering Economics5–8	C.Economic analyses (e.g., benefit-cost, break- even, minimum cost,overhead, life cycle) D.Project selection (e.g., comparison of		65	13. Air Quality and Control 8–12	A. Ambient and indoor air quality (e.g., criteria, toxic and hazardous air pollutants)	
20		projects with unequal lives,lease/buy/make, depreciation, discounted cash flow)		66	Rest	Rest	
21	5. Fundamental Principles 7–11	A. Population projections and demand calculations (e.g., water, wastewater, solid waste, energy)		67	- 13. Air Quality and Control 8–12	B. Mass and energy balances (e.g., STP basis, loading rates, heating values)	
22		B. Reactors C. Materials science (e.g., properties,		68		C. Emissions (e.g., factors, rates) D. Atmospheric modeling and meteorology (e.g.,	
23		corrosion, compatibility, stress strain)				stability classes, dispersion modeling, lapse rates) E. Gas treatment technologies (e.g., biofiltration, scrubbers, adsorbers, incineration, catalytic	
24	Nest	A. Stoichiometry and chemical reactions (e.g.,		70		reducers) F. Particle treatment technologies (e.g., baghouses,	
25		equilibrium, acid-base, oxidation-reduction, precipitation, pC-pH) B. Kinetics (e.g., chemical conversion, growth		71 72	Rest	cyclones, electrostatic precipitators)	-
26	6. Environmental Chemistry 7–11	C. Organic chemistry (e.g., nomenclature,		12	13. Air Quality and Control 8–12	G. Indoor air quality modeling and controls (e.g., air exchanges, steady- and nonsteady-state reactor	
27		functional group reactions) D. Multimedia equilibrium partitioning (e.g.,		73	10.741 Quality and Control of 12	model) A. Mass and energy balances	
28	7 Haalib Hawarda and Diek Assessment A.C.	Henry's law, octanol partitioning coefficient) A. Dose-response toxicity (e.g., carcinogen,		74		B. Solid waste management (e.g., collection,	
29	7. Health Hazards and Risk Assessment 4–6	noncarcinogen)		75	14. Solid and Hazardous Waste 7–11	transportation, storage, composting, recycling, waste to energy) C. Solid waste disposal (e.g., landfills, leachate and	
30	Rest	Rest		76		gas collection)	
31	7. Health Hazards and Risk Assessment 4–6	B. Exposure routes and pathways C. Occupational health (e.g., PPE, noise		77	Rest	D. Hazardous waste compatibility Rest	
32		pollution, safety screening) A. Fluid statics (e.g., pressure, force analysis)		78	Rest	E. Site characterization (e.g., sampling, monitoring,	
33	Fluid Mechanics and Hydraulics 12–18	B. Closed conduits (e.g., Darcy-Weisbach, Hazen-Williams, Moody)		79 80	14. Solid and Hazardous Waste 7–11	remedial investigation) F. Hazardous and radioactive waste treatment and disposal (e.g., physical, chemical, thermal,	
35		C. Open channel (e.g., Manning, supercritical/subcritical, culverts, hydraulic elements)		81	15. Energy and Environment 4–6	biological) A. Energy sources concepts (e.g., conventional and alternative)	
	Rest	Rest				B. Environmental impact of energy sources and production (e.g., greenhouse gas production, carbon	
36		D. Pumps (e.g., power, operating point, parallel,		82 83	Rest	footprint, thermal, water needs) Rest	
38		series) E. Flow measurement (e.g., weirs, orifices, flumes)		84		Test,Review	
	8. Fluid Mechanics and Hydraulics 12–18	F. Blowers (e.g., power, inlet/outlet pressure,		Ì		Test,Review	
39		efficiency, operating point, parallel, series) G. Fluid dynamics (e.g., Bernoulli, laminar flow,		85	Test,Review	Test,Review	
40 41		turbulent flow, continuity equation) H. Steady and unsteady flow		86 87		Test,Review	
42	Rest	Rest		88		Test,Review Test,Review	
43		A. Thermodynamic laws (e.g., first law, second law)		89	Rest	Rest	
	9. Thermodynamics 3–5	B. Energy, heat, and work (e.g., efficiencies, coefficient of performance, energy cycles, energy conversion, conduction, convection,			Exam	Exam	
44 45		radiation) C. Behavior of ideal gases		90 91			
	10. Surface Water Resources and Hydrology	A. Runoff calculations (e.g., land use, land				ENGINEE	RS
46	9–14	cover, time of concentration, duration, intensity, frequency, runoff control, runoff management)		92			